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Background Introduction

« Graph Neural Networks (GNNs):

 handle graph-structured data
* help decision-making
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“surrounding structure”: the edges in a
subgraph that centered on this node up
to several hops away.
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Background Introduction

Understanding which edge brings bias is critical.

An example: loan approval decision making in a transaction network.
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Background Introduction

Understanding which edge brings bias is critical.

An example: loan approval decision making in a transaction network.
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Existing Challenges

Challenges:

* (1) Fairness Notion Gap: how to measure the
level of bias for the GNN prediction at the
instance level?

O 0. How to determine the prediction for
TN H- - - - a specific node as biased?

A Biased
Prediction
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* (2) Usability Gap: to achieve a better
understanding, both bias and fairness should be
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Existing Challenges

Challenges:

* (1) Fairness Notion Gap: how to measure the
level of bias for the GNN prediction at the
instance level?

* (2) Usability Gap: to achieve a better
understanding, both bias and fairness should be
explained.

* (3) Faithfulness Gap: how to obtain bias
(fairness) explanations that are faithful to the
GNN prediction?

The obtained explanations should reflect the true reasoning results.
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Results would be more biased. Edges the GNN actually relies on.

* (3) Faithfulness Gap: how to obtain bias
(fairness) explanations that are faithful to the
GNN prediction?
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Methodology

* Proposed fairness metric: Node-Level Bias
in GNNs.
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Minimized by changing the output of node v;
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* Proposed fairness metric: Node-Level Bias
in GNNs.
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* Proposed fairness metric: Node-Level Bias
in GNNs.
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Methodology

 Proposed framework REFEREE.

Node in Group 0 Bias - . .
@ NodeinGrowo Explainer ho 5 O] . Meximize

Computation

Graph §; &> Bias Explanation Z: Mutual Fin) veS. R

i S with edge set €; Information |-£: Wasserstein

| \ : Sparsity —— Distance ‘

i @ Regularization — e ‘ ‘

i ‘ \. E I % : Distribution GNN I—m—ﬁ ‘

i i Difference %: Sparsity mumunnl

: : Regularizati Y ) 3

| : s Z: Wasserstein , "

| ! Fairness Explanation Z: Mutual Distance

i : E> with edge set €] Information P(75) V.S. P(Y])

i Input Graph G ( Fairness .

s e R AN el e i . , y A I I . I I I . . .

@ Nodein Group 1 Explainer hq, : Minimize >
REFEREE includes:

(1) Bias Explainer and (2) Fairness Explainer.

Explainer backbone model:
any differentiable GNN explanation model that identifies edge sets.
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Methodology

 Proposed framework REFEREE.
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 Proposed framework REFEREE.
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 Proposed framework REFEREE.
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Methodology

 Proposed framework REFEREE.
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Methodology

 Proposed framework REFEREE.
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Methodology

 Proposed framework REFEREE.
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Third goal: Enforcing Fidelity.
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Methodology

 Proposed framework REFEREE.
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Methodology

 Proposed framework REFEREE.
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 Proposed framework REFEREE.
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Controlling: (1) difference between explanations; (2) fidelity; (3) refinement.
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Experiments

 Downstream Task: Node classification.

3 Real-world Datasets: German [1], Recidivism [2], and Credit [3].

2 Explanation Framework Backbones: GNN Explainer [4] and PGExplainer [5].

4 Baselines: Attention-based explanation [4], gradient-based explanation [4],
vanilla GNN Explainer [4], vanilla PGExplainer [5].

4 Evaluation Metrics: the proposed AB (introduced in previous slides),
Fidelity— score [6], Agp [7], and Agg [8];

Dataset German Credit Recidivism Credit Defaulter
# Nodes 1,000 18,876 30,000

# Edges 22,242 321,308 1,436,858

# Attributes 27 18 13

Avg. degree 44.5 34.0 95.8

Sens. Gender Race Age

Label Good / Bad Bail / No Bail Default / No Default
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Experiments

 Effectiveness of Explaining Bias (Fairness).

To enable the adopted baselines identify bias/fairness explanations, we
also add the loss term explaining bias and fairness on them.

German Recidivism Credit
AB; (Promoted) AB; (Reduced) AB; (Promoted) AB; (Reduced) AB; (Promoted) AB; (Reduced)

Att. 6.11 + 2.51 7.84 + 3.48 4.58 + 1.67 7.18 + 2.24 6.72 £ 0.75 8.48 + 3.29
Grad. 4.27 + 0.98 5.60 + 1.85 3.59 + 2.02 442 + 2.01 5.97 £ 1.07 9.79 + 1.78
GNN Explainer 5.17 £ 1.20 3.37 £ 1.53 1.74 £ 0.72 3.55 + 2.08 7.41 £ 1.75 9.24 + 2.66
PGExplainer 8.73 £ 0.74 9.37 £ 1.87 6.36 + 2.39 8.66 + 1.82 7.48 + 2.70 10.54 + 3.22
GE-REFEREE 14.29 + 2.73 14.45 + 2.29 13.94 + 3.74 12.05 + 2.79 10.30 + 2.64 15.07 £+ 3.35
PGE-REFEREE 15.72 + 2.31 11.97 + 2.62 10.39 + 4.08 12.57 + 3.12 11.57 + 2.91 14.67 + 3.49

Observations: REFEREE achieves the best performance over alternatives
on identifying

(1) edges that account for the exhibited bias;

(2) edges that are helpful to fulfill fairness;
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Experiments

« Explanation Fidelity.

Here, Fidelity— generally measures to what extent the GNN model maintains the

vanilla predictions based on the identified explanations.

German Recidivism Credit

Vanilla 88.02 + 1.48 90.04 + 1.43 85.26 + 1.67

GCN B. Explainer 92.20 £ 1.39 90.26 + 3.24 87.60 + 2.79
F. Explainer 89.17 + 0.85 92.08 +2.44 89.41 +4.08
Vanilla 83.65 + 3.02 8791 +2.04 88.64 + 341

GAT B. Explainer 85.71+ 2.31 90.51 + 4.58 86.09 + 2.07
F. Explainer 84.40 +1.57 9198 +3.95 87.04 + 3.10
Vanilla 88.58 +2.50 91.77 +1.42 87.62 + 2.60

GIN B. Explainer 88.11 +£1.78 90.26 + 4.13 86.47 + 2.13
F. Explainer 89.67 +2.23 9145+ 1.78 88.17 + 2.98

Observations:

Both Bias Explainer and Fairness Explainer achieve comparable performance on
fidelity with the vanilla GNN Explainer across different datasets and GNNss.
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Experiments

 Debiasing GNNs with Explanations.

Bias Fairness
Explanation Explanation
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Experiments

 Debiasing GNNs with Explanations.

Edges only
appear in bias
explanation.

Fairness
Explanation

Bias
Explanation

A strategy: deleting edges only appear in bias explanation (but not in fairness
explanation) to help achieve a balance between GNN debiasing and utility.
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Experiments

 Debiasing GNNs with Explanations.

Edges only
appear in bias
explanation.

Fairness
Explanation

Bias
Explanation

A strategy: deleting edges only appear in bias explanation (but not in fairness
explanation) to help achieve a balance between GNN debiasing and utility.
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< 15 .
S The value changes of adopted metrics
<(]% 101 (Agp in this example).
5 o
0 5 1o 15 20 Edges only appear in bias explanations

: 0
Sampled Node Ratio (%0) - —— 1o deleted (for sampled nodes).
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Experiments
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 Debiasing GNNs with Explanations.
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(1) With more edges that only appear in the bias explanations being removed,
both Agp and Agg reduce significantly.
(2) Removing the edges that only appear in the bias explanations generally
reduces the GNN prediction accuracy.
(3) REFEREE leads to limited accuracy reduction but achieves a more

significant reduction on Agp and Agg.
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Conclusions

(1) A novel explanation problem is studied: how does the
surrounding structure of a node influences the bias level of
its corresponding GNN prediction?

(2) A novel explanation framework is proposed: stRuctural
Explanation oF biasEs in gRaph nEural nEtworks
(REFEREE);

(3) Extensive experiments corroborate the effectiveness of
REFEREE on rendering effective explanations and helping
GNN debiasing.
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