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The surrounding 
structure of a node

Its corresponding 
prediction in GNNs

Induce bias

“surrounding structure”: the edges in a
subgraph that centered on this node up 
to several hops away.



Understanding which edge brings bias is critical.
An example: loan approval decision making in a transaction network.
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Understanding which edge brings bias is critical.
An example: loan approval decision making in a transaction network.
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Understanding which edge brings bias is critical.
An example: loan approval decision making in a transaction network.
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Challenges:

• (1) Fairness Notion Gap: how to measure the 
level of bias for the GNN prediction at the 
instance level? 
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• (1) Fairness Notion Gap: how to measure the 
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• Proposed fairness metric: Node-Level Bias 
in GNNs.
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• Proposed fairness metric: Node-Level Bias 
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• Proposed framework REFEREE.
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REFEREE includes: 
(1) Bias Explainer and (2) Fairness Explainer.

Explainer backbone model: 
any differentiable GNN explanation model that identifies edge sets.



• Proposed framework REFEREE.
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First goal: Explaining Bias and Fairness.

Overall loss for the first goal:
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• Proposed framework REFEREE.
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Second goal: Enforcing difference to enhance stability.
Bias Explanation

Fairness Explanation
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Overall loss for goal 2:

Bias Explanation

Fairness Explanation

Second goal: Enforcing difference to enhance stability.
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• Proposed framework REFEREE.
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Fourth goal: Refining Explanation.

Overall loss for the fourth goal:



• Proposed framework REFEREE.
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• Proposed framework REFEREE.
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Overall loss for all goals above:

Controlling: (1) difference between explanations; (2) fidelity; (3) refinement.
Hyperparameters:



• Downstream Task: Node classification.
• 3 Real-world Datasets: German [1], Recidivism [2], and Credit [3].
• 2 Explanation Framework Backbones: GNN Explainer [4] and PGExplainer [5].
• 4 Baselines: Attention-based explanation [4], gradient-based explanation [4], 

vanilla GNN Explainer [4], vanilla PGExplainer [5].
• 4 Evaluation Metrics: the proposed Δ𝐵 (introduced in previous slides), 

Fidelity− score [6], Δ#$ [7], and Δ%& [8];
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• Effectiveness of Explaining Bias (Fairness).
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Observations: REFEREE achieves the best performance over alternatives 
on identifying 

(1) edges that account for the exhibited bias;
(2) edges that are helpful to fulfill fairness;

To enable the adopted baselines identify bias/fairness explanations, we 
also add the loss term explaining bias and fairness on them.



• Explanation Fidelity.
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Observations:
Both Bias Explainer and Fairness Explainer achieve comparable performance on 
fidelity with the vanilla GNN Explainer across different datasets and GNNs.

Here, Fidelity− generally measures to what extent the GNN model maintains the 
vanilla predictions based on the identified explanations.



• Debiasing GNNs with Explanations.
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A strategy: deleting edges only appear in bias explanation (but not in fairness 
explanation) to help achieve a balance between GNN debiasing and utility.

Edges only 
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• Debiasing GNNs with Explanations.
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Edges only appear in bias explanations 
are deleted (for sampled nodes).

The value changes of adopted metrics 
(Δ#$ in this example).

A strategy: deleting edges only appear in bias explanation (but not in fairness 
explanation) to help achieve a balance between GNN debiasing and utility.
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• Debiasing GNNs with Explanations.
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Observations:
(1) With more edges that only appear in the bias explanations being removed, 
both Δ#$ and Δ%& reduce significantly. 
(2) Removing the edges that only appear in the bias explanations generally 
reduces the GNN prediction accuracy.
(3) REFEREE leads to limited accuracy reduction but achieves a more 
significant reduction on Δ#$ and Δ%&. 
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(1) A novel explanation problem is studied: how does the 
surrounding structure of a node influences the bias level of 
its corresponding GNN prediction?

(2) A novel explanation framework is proposed: stRuctural
Explanation oF biasEs in gRaph nEural nEtworks
(REFEREE);

(3) Extensive experiments corroborate the effectiveness of 
REFEREE on rendering effective explanations and helping 
GNN debiasing.
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