Tutorials:

Tutorials:

  1. Causal Inference with Latent Variables: Recent Advances and Future Perspectives
    Yaochen Zhu, Yinhan He, Jing Ma, Mengxuan Hu, Sheng Li, Jundong Li
    KDD 2024 (Accepted to Survey Track) | paper

Surveys:

  1. Usable XAI: 10 strategies towards exploiting explainability in the LLM era
    Xuansheng Wu, Haiyan Zhao, Yaochen Zhu, Yucheng Shi, Fan Yang, Tianming Liu, Xiaoming Zhai, Jundong Li, Mengnan Du, Ninghao Liu
    ArXiv 2024 | paper

  2. Knowledge Editing for Large Language Models: A Survey
    Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, Jundong Li
    ACM CSUR | paper

Conference Papers:

  1. Understanding and Modeling Job Marketplace with Pretrained Language Models
    Yaochen Zhu, Liang Wu, Binchi Zhang, Song Wang, Qi Guo, Liangjie Hong, Luke Simon, Jundong Li
    CIKM 2024 | paper | codes

  2. Consistency and Discrepancy-Based Contrastive Tripartite Graph Learning for Recommendations
    Linxin Guo, Yaochen Zhu, Min Gao, Yinghui Tao, Junliang Yu, Jundong Li
    KDD 2024 | paper | codes

  3. Knowledge Graph-Enhanced Large Language Models via Path Selection
    Haochen Liu, Song Wang, Yaochen Zhu, Yushun Dong, Jundong Li
    ACL 2024 (Findings) | paper | codes

  4. Collaborative Large Language Model for Recommender Systems
    Yaochen Zhu, Liang Wu, Qi Guo, Liangjie Hong, Jundong Li
    WWW 2024 | paper | codes
    Invited Poster Presentation at 2024 Netflix Workshop on Personalization, Recommendation and Search (PRS).

  5. Path-specific Counterfactual Fairness for Recommender Systems
    Yaochen Zhu, Jing Ma, Liang Wu, Qi Guo, Liangjie Hong, Jundong Li
    KDD 2023 | paper | codes

  6. Mutually-regularized dual collaborative variational auto-encoder for recommendation systems
    Yaochen Zhu and Zhenzhong Chen
    WWW 2022 | paper | codes | slides

  7. A multimodal variational encoder-decoder framework for micro-video popularity prediction
    Jiayi Xie, Yaochen Zhu, …, Zhenzhong Chen (Short paper, * for equal contribution)
    WWW 2020 | paper | codes

  8. Multimodal deep denoising framework for affective video content analysis
    Yaochen Zhu, Zhenzhong Chen, Feng Wu
    ACM MM 2019 | paper | Oral | image1 | image2 | image3 | image4

Journal Papers:

  1. Deep causal reasoning for recommendations
    Yaochen Zhu, Jing Yi, Jiayi Xie, Zhenzhong Chen
    ACM TIST, 2022. | paper | codes

  2. Variational bandwidth auto-encoder for hybrid recommender systems
    Yaochen Zhu and Zhenzhong Chen
    IEEE TKDE, 2022. | paper | codes

  3. Cross-modal variational auto-encoder for micro-video background music recommendation
    Jing Yi, Yaochen Zhu, Jiayi Xie, Zhenzhong Chen
    IEEE TMM, 2021. | paper | codes

  4. Micro-video popularity prediction via multimodal variational information bottleneck
    Jiayi Xie, Yaochen Zhu, Zhenzhong Chen
    IEEE TMM, 2021. | paper | codes

  5. Affective video content analysis via multimodal deep quality embedding network
    Yaochen Zhu, Zhenzhong Chen, Feng Wu
    IEEE TAFFC, 2020. | paper | codes

Book Chapters:

  1. Causal Inference in Recommender Systems: A Survey of Strategies for Bias Mitigation, Explanation, and Generalization
    Yaochen Zhu, Jing Ma, Jundong Li
    Chapter 10, Machine Learning for Causal Inference, Springer | paper